Shan Ye

Logo

data-driven geoscientist, software engineer, AI4S researcher

Contact

Email: yeshantulsa@hotmail.com
Chinese webpage: 中文网页

Social Media

Twitter @yeshan_geo

ORCID 0000-0001-9814-4771

LinkedIn

计算机视觉 Computer Vision

知识图谱 Knowledge graph of the class

课程知识图谱/Link to the KG

课件 Slides

节次/Lec 主要内容/Content  
1. 概述 (intro) 课程概况、行业概况、学科关系、哲学基础、发展历史 (overview, related disciplines, fundamentals, history) pdf
2. 硬件 (hardware) 机器视觉系统的构成、光源、镜头、相机、感光器件 (light source, lens, camera, photosensitive device, etc.) pdf
3. 图像增强1 (image preprocess 1) 图像的构成及常见格式、色彩空间、锐化和降噪、滤波器 (data structure of images, color space, noise reduction, filtering, etc.) pdf
4. 图像增强2 (image preprocess 2) 卷积和滤波、边缘检测、图像金字塔、FFT及频域操作 (convolution and filtering, edge detection, image pyramid, Fourier transform, frequency domain operations, etc.) pdf
5. 图像分类任务1 (image classification 1) 使用场景、任务类别、难点和挑战 (classification tasks, challenges, etc.) pdf
6. 图像分类任务2 (image classification 2) 图像的向量表示、图像的特征表示、机器学习流程 (vector representation of images, features of images, review on machine learning basics) pdf
7. 线性分类器1 (linear classifier 1) 线性代数表达、决策边界、合叶损失 (linear algebra basics review, decision boundary, Hinge loss, etc.) pdf
8. 线性分类器2 (linear classifier 1) 超参数、正则项、梯度计算 (hyperparameters, regularization, gradient, etc.) pdf
9. 模型的训练 (training a model) 随机梯度下降、小批量梯度下降、交叉验证 (stochastic gradient descent, mini-batch gradient descent, cross validation, etc.) pdf
10. 全连接神经网络1 (fully-connected neural networks 1) 网络结构、激活函数、交叉熵损失和KL散度、信号传播、梯度回传 (ANN structure, activation function, cross entropy loss and KL divergence, signal propagation, backpropagation, etc.) pdf
11. 全连接神经网络2 (fully-connected neural networks 1) 梯度消失和梯度爆炸、动量法、自适应梯度、自适应矩估计、权值初始化、批归一化、随机失活、调参 (gradient disappearance and gradient explosion, momentum method, AdaGrad, Adam, weight initialization, batch normalization, dropout, parameter tuning, etc.) pdf
12. 卷积神经网络1 (convolutional neural network 1) CNN总体架构、纹理基元、卷积核组 (CNN architecture, image texture, convolution kernel group) pdf
13. 卷积神经网络2 (convolutional neural network 2) 卷积层的堆叠、池化层 (stacking of convolutional layers, pooling) pdf
14. 经典构架1 (classic CNNs 1) LeNet, AlexNet pdf
15. 经典构架2 (classic CNNs 2) ZF Net, VGG, GoogLeNet, ResNet pdf
16. 前沿进展 (recent advances) vision transformer, diffusion models, GANs pdf

每个节次90分钟 (90 mins per lecture)

Lab 课作业

节次/Lec 主要内容/Contents  
Lab 1 环境配置、Python练习、图像的基本操作 (working environment configuration, Python basics, basic image operations) pdf
Lab 2 卷积和滤波、OpenCV的基本操作 (convolution, filtering, basics of OpenCV) pdf
Lab 3 图像金字塔 (image pyramid) pdf
Lab 4 傅里叶转换和频率域操作 (Fourier transforms and frequency domain operations) pdf
Lab 5 线性分类器的实现 (coding up a linear classifier) pdf
Lab 6 计算图的OOP实现、梯度计算 (object-oriented programming for a computation graph, gradient calculation) pdf
Lab 7 ResNet和迁移学习 (coding up a ResNet, transfer learning) pdf
Lab 8 风格迁移 (style transfering) pdf

说明 Notes

本课程部分内容参考了以下课程 (This course is partially derived from the following classes):